This document provides an overview of various functions for Python programming
Andrew L. Mackey
Statistics and probability are important tools for the analysis of data.
The following code is useful for general data wrangling tasks.
The following are examples of the four built-in data types in Python.
List Example
# list list1 = ["a", "b", "c"] print( list1[0], list1[1], list1[2]) list1.append("d") n = size(list1) print( list1[n - 1] ) #print last element
Tuple Example
# *** Tuple *** tuple1 = ("a", "b", "c") print(tuple1[0], tuple1[1]) n = len(tuple1) print(tuple1[n-1])
Set Example
# *** Set *** set1 = { "a", "b", "c" } # add a member set1.add("d") # remove a member set1.remove("c") # add items to set1 from any iterable object set2 = { "m", "n", "o" } set1.update(set2) set1.update(["x", "y"]) print(set1) result1 = "a" in set1 #is "a" in the set? result2 = "z" in set1 #is "z" in the set? print(result1, result2)
Dictionary Example
# *** Dictionary *** test = { "a" : 123, "b" : 456, "c" : 789 }
Python supports object-oriented programming.
class Car: def __init__(self): self.var1 = []
To create an instance of the given class, you can simply execute c = Car()
.
The method __init()__
is automatically executed when the instance is created. This is the constructor in the Python programming language.
The purpose of the constructor is typically to assign values to instance variables of the class when an object is defined.
You can also add arguments to this function.
class Car: def __init__(self, color, doors): self.var1 = [] self.main_color = color self.num_doors = doors def change_color(self, color): self.main_color = color def get_color(self): return self.main_color
Python also supports inheritance. The parent class(es) should be placed in parentheses next to the class name.
class Blue_Car(Car):
__call__
method.
This method makes it possible for developers to create objects of functions that act as functions.
class Test: def __init__(self): self.x = 123 def __call__(self, newval): print(f"Old value = {self.x} New Value = {self.x + newval}") self.x = self.x + newval return self #optional return statement # Create an instance of Test t = Test() # This will invoke the __call__ method and output 223 t(100)
The following code is useful for general data wrangling tasks.
The zip()
function accepts zero or more iterable data structures (e.g. list, string, dict, etc.), aggregates them into a tuple, and then returns an object.
list1 = ["a", "b", "c"] list2 = [1, 2, 3] # Result: [('a', 1), ('b', 2), ('c', 3)] result1 = list( zip(list1, list2) ) # Result: {('a', 1), ('b', 2), ('c', 3)} result2 = set( zip(list1, list2) )
Merge two lists into a single Pandas dataframe
list1 = ["a", "b", "c"] list2 = [1, 2, 3] # Result: [('a', 1), ('b', 2), ('c', 3)] result1 = list( zip(list1, list2) ) df = pd.DataFrame(data=result1, columns=["Column1", "Column2"])
The following code represents a few functions that are useful for various tasks.
from PIL import Image, ImageDraw # open an image img1 = Image.open("img1.jpg") # convert image to numpy array array1 = np.asarray(img1) # convert numpy array to image img2 = Image.fromarray(array1)