Department of Computer Science and Engineering University of Arkansas – Fort Smith

Quick Review of Sets, Functions, Quantifiers, and Logic

Andrew L. Mackey Department of Computer Science and Engineering University of Arkansas – Fort Smith Fort Smith, Arkansas

Sets

A set is an unordered collection of objects. Let X represent a set of numbers.

$$
X = \{1, 2, 3, 5, 8\}
$$

Each element in a set is assumed to be distinct. The number of distinct elements in a set is called the **cardinality** of the set, denoted as |X|. For example, the the cardinality of X is $|X| = 5$. If you have repeated elements in a set, each element is counted only once. For example, consider the following and observe how duplicate elements do not change the set:

> $X = \{1, 2, 3, 5, 8\} = \{1, 1, 1, 2, 2, 2, 3, 5, 5, 8\}$ $|X| = |\{1, 2, 3, 5, 8\}| = |\{1, 1, 1, 2, 2, 2, 3, 5, 5, 8\}| = 5$

Sets can be *finite*, containing a fixed number of elements, or *infinite*. The following are useful sets to know:

Set-builder Notation

Set-builder notation is a mathematical notation that we often use to describe a set. We enumerate each of the elements or state the exact properties members in the set must utilize. For example, consider the following:

 $Y = \{x \mid x$ is natural number between 5 and 10, inclusively }

This implies that $Y = \{5, 6, 7, 8, 9, 10\}$. Suppose that we wanted to create a new set Z that includes all even elements of Y :

$$
Z = \{x \mid x \in Y \text{ and } x \text{ mod } 2 = 0\}
$$

The notation $x \in Y$ represents a locally-scoped variable x for a member that is in the set $Y(x = 5$, $x = 6$, $x = 7$, ...). This would be similar to x in the for-each loop syntax for (int x : A).

Functions

Let function f be defined with the sets X and Y , where X is the set corresponding to the domain and Y is the set corresponding to the codomain:

$$
f: X \to Y
$$

The codomain is the set of possible values that a function f may output. The actual values that a set outputs is referred to as the range. For example, consider the function g as defined below:

$$
g : \mathbb{N} \to \mathbb{Z}
$$
 such that $g(n) = -1$

This states the function g accepts a parameter from the domain of natural numbers and outputs a result from the codomain of integers. We can see that $g(0) = -1$ for $n = 0$, $g(1) = -1$ for $n = 1$, and $g(1000) = -1$ for $n = 1000$. Since the function only outputs -1 , the set representing the range is range = $\{-1\}$. It is important to observe that range \subseteq codomain.

A function f is **injective** (or **one-to-one**) if there exists exactly one $x \in X$ such that $f(x) = y$ where $y \in Y$. If $f(x_1) = y$ and $f(x_2) = y$ for some $x_1, x_2 \in X$, then the function f would not be injective. This simply means that we can only have a single domain value that maps to a value in the range.

A function f is **surjective** (or **onto**) if for every value $y \in Y$, where Y is the set representing the codomain of the function, there exists $x \in X$, where X is the set representing the domain, such that $f(x) = y$. Another way to view this is a function f is surjective when the range is equal to the codomain of the function.

A function f is **bijective** (or **correspondence**) when a function is both *injective* (*one-to-one*) and surjective (onto). Each element of X is paired with exactly one element from Y . Similarly, each element from Y is paired with exactly one element from X . There exists no unpaired elements.

A function f that is bijective from set X to set Y, then $\{(y, x) | (x, y) \in f\}$ is an *injective (one-to*one) and surjective (onto) function from Y to X representing the **inverse function** f^{-1} . Thus, every bijective function will have an inverse function.

$$
f(x) = y \qquad \qquad f^{-1}(y) = x
$$

Consider the following properties for the bijective function $f: X \to Y$:

- 1. Each element of set X is paired with exactly one element of set Y .
- 2. Each element of set Y must be paired with at least one element of set X ("onto Y").
- 3. No element of set Y may be paired with more than one element of set X ("one-to-one").

Conditional Propositions

Propositions

A statement with a Boolean outcome (true or false) is a proposition. These statements are either true or false. For example, consider the following statements:

> $p =$ The course number for Data Structures is 2003 $q = \text{UAFS}$ is located in Fort Smith, Arkansas $r = x \geq 10$ when $x = 35$

The **conjunction** of two propositions p and q is the proposition:

$$
p \wedge q \qquad \equiv \qquad p \text{ and } q
$$

The disjunction of two propositions p and q is the proposition:

$$
p \vee q \qquad \equiv \qquad p \text{ or } q
$$

Let r be some new proposition such that $r = p \wedge q$. Since r is also a proposition, it will represent a result of either true or false. For example, if $r = p \wedge q$ and $s = p \vee q$, then we can define t by combining r and s as follows:

$$
t = r \wedge s
$$

= $(p \wedge q) \wedge (p \vee q)$

Conditional

Let p and q be propositions. A **conditional proposition** is defined as

 $p \Rightarrow q$

Converse

If $p \Rightarrow q$ is a conditional proposition, the **converse** of the proposition is defined as:

 $q \Rightarrow p$

Contrapositive

If $p \Rightarrow q$ is a conditional proposition, the **contrapositive** (or transposition) of the proposition is defined as:

 $\neg q \Rightarrow \neg p$

Biconditional

Let p and q be propositions. A **biconditional proposition** is defined as

 $p \Longleftrightarrow q$

It can also be read as p if and only if q, sometimes denoted as p iff q.

Quantifiers

Let S be some set. Let $P(x)$ be some propositional function regarding variable x, where some statement is made about x that is either true or false. Consider the following statement for $P(x)$:

 $P(x)$: x is greater than 3

The set S is the *domain of discourse* which specifies the allowable values of x in $P(x)$. For our example, we will let $S = \{1, 2, 3, 4, 5\}$. For each value in S, the statement $P(x)$ will return either true or false. For example, consider the following outcomes:

 $P(1) = false$ $P(2) = false$ $P(3) = false$ $P(4) = true$ $P(5) = true$

Universal Quantifier

A universally quantified statement is a statement where every element in the set share some common characteristic. Let P be some propositional function with a domain of discourse S . The following statement is a universally quantified:

for every
$$
x, P(x) \equiv \forall x P(x)
$$

The symbol ∀ represent the universal quantifier. For our example, we will let our domain of discourse A be the set $A = \{1, 2, 3, 4, 5\}$. We will use the proposition function $P(x)$ that returns true or false for the statement x is greater than 3. Since a statement is either true or false, consider the following quantified statement and determine its outcome:

$$
\forall x \in A, P(x)
$$

This statement should return false since there exists some x in A where $x \leq 3$. Another way to consider the statement $\forall x \in A, P(x)$ is to consider the following as a larger statement involving conjunction:

$$
\bigwedge_{x \in A} P(x) = P(1) \land P(2) \land P(3) \land P(4) \land P(5)
$$

Existential Quantifier

An existentially quantified statement is a *statement* where there exists at least one element in the set where some property holds. Let P be some propositional function with a domain of discourse S. The following statement is a existentially quantified:

there exists
$$
x, P(x) \equiv \exists x P(x)
$$

The symbol ∃ represent the universal quantifier. For our example, we will let our domain of discourse B be the set $B = \{1, 2, 3, 4, 5\}$. We will use the proposition function $P(x)$ that returns true or false for the statement x is greater than 3. Since a statement is either true or false, consider the following quantified statement and determine its outcome:

$$
\exists x \in A, P(x)
$$

This statement should return true since there exists at least one x in B where $x \leq 3$. Another way to consider the statement $\exists x \in B$, $P(x)$ is to consider the following as a larger statement involving disjunction:

$$
\bigvee_{x \in A} P(x) = P(1) \lor P(2) \lor P(3) \lor P(4) \lor P(5)
$$

Propositional Logic

Propositions p and q are **logically equivalent** when the both p and q are either both true or both false.

Logical Equivalence

1. $p \Rightarrow q \equiv p \land \neg q$ 2. $p \Leftrightarrow q \equiv (p \Rightarrow q) \wedge (q \Rightarrow p)$

De Morgan's Laws for Logic

- 1. $\neg(p \lor q) \iff \neg p \land \neg q$
- 2. $\neg(p \land q) \iff \neg p \lor \neg q$
- 3. $\neg(p \Rightarrow q) \Longleftrightarrow p \land \neg q$
- 4. $\neg(\forall x P(x)) \Longleftrightarrow \exists x \neg P(x)$
- 5. $\neg(\exists x P(x)) \Longleftrightarrow \forall x \neg P(x)$