
Department of Computer Science and Engineering
University of Arkansas – Fort Smith

Quick Review of Sets, Functions, Quantifiers, and Logic

Andrew L. Mackey
Department of Computer Science and Engineering

University of Arkansas – Fort Smith
Fort Smith, Arkansas

Sets
A set is an unordered collection of objects. Let X represent a set of numbers.

X = {1, 2, 3, 5, 8}

Each element in a set is assumed to be distinct. The number of distinct elements in a set is called
the cardinality of the set, denoted as |X|. For example, the the cardinality of X is |X| = 5. If
you have repeated elements in a set, each element is counted only once. For example, consider the
following and observe how duplicate elements do not change the set:

X = {1, 2, 3, 5, 8} = {1, 1, 1, 2, 2, 2, 3, 5, 5, 8}

|X| = |{1, 2, 3, 5, 8}| = |{1, 1, 1, 2, 2, 2, 3, 5, 5, 8}| = 5

Sets can be finite, containing a fixed number of elements, or infinite. The following are useful sets
to know:

Symbol Set Example Members

N Natural Numbers 1, 2, 3, 4, · · ·

Z Integers · · · ,−2,−1, 0, 1, 2, · · ·

R Real Numbers −2.92, 0.731, 1, π

Set-builder Notation
Set-builder notation is a mathematical notation that we often use to describe a set. We enumerate
each of the elements or state the exact properties members in the set must utilize. For example,
consider the following:

1

Computer Science and Engineering University of Arkansas – Fort Smith

Y = {x | x is natural number between 5 and 10, inclusively }

This implies that Y = {5, 6, 7, 8, 9, 10}. Suppose that we wanted to create a new set Z that includes
all even elements of Y :

Z = {x | x ∈ Y and x mod 2 = 0}

The notation x ∈ Y represents a locally-scoped variable x for a member that is in the set Y (x = 5,
x = 6, x = 7, ...). This would be similar to x in the for-each loop syntax for (int x : A).

Functions
Let function f be defined with the sets X and Y , where X is the set corresponding to the domain
and Y is the set corresponding to the codomain:

f : X → Y

The codomain is the set of possible values that a function f may output. The actual values that a
set outputs is referred to as the range. For example, consider the function g as defined below:

g : N→ Z such that g(n) = −1

This states the function g accepts a parameter from the domain of natural numbers and outputs a
result from the codomain of integers. We can see that g(0) = −1 for n = 0, g(1) = −1 for n = 1,
and g(1000) = −1 for n = 1000. Since the function only outputs −1, the set representing the range
is range = {−1}. It is important to observe that range ⊆ codomain.

A function f is injective (or one-to-one) if there exists exactly one x ∈ X such that f(x) = y
where y ∈ Y . If f(x1) = y and f(x2) = y for some x1, x2 ∈ X, then the function f would not be
injective. This simply means that we can only have a single domain value that maps to a value in
the range.

A function f is surjective (or onto) if for every value y ∈ Y , where Y is the set representing the
codomain of the function, there exists x ∈ X, where X is the set representing the domain, such
that f(x) = y. Another way to view this is a function f is surjective when the range is equal to the
codomain of the function.

A function f is bijective (or correspondence) when a function is both injective (one-to-one)
and surjective (onto). Each element of X is paired with exactly one element from Y . Similarly,

2

Computer Science and Engineering University of Arkansas – Fort Smith

each element from Y is paired with exactly one element from X. There exists no unpaired elements.

A function f that is bijective from set X to set Y , then {(y, x) | (x, y) ∈ f} is an injective (one-to-
one) and surjective (onto) function from Y to X representing the inverse function f−1. Thus,
every bijective function will have an inverse function.

f(x) = y f−1(y) = x

Consider the following properties for the bijective function f : X → Y :

1. Each element of set X is paired with exactly one element of set Y .

2. Each element of set Y must be paired with at least one element of set X (“onto Y ”).

3. No element of set Y may be paired with more than one element of set X (“one-to-one”).

Conditional Propositions

Propositions
A statement with a Boolean outcome (true or false) is a proposition. These statements are either
true or false. For example, consider the following statements:

p = The course number for Data Structures is 2003
q = UAFS is located in Fort Smith, Arkansas
r = x ≥ 10 when x = 35

The conjunction of two propositions p and q is the proposition:

p ∧ q ≡ p and q

The disjunction of two propositions p and q is the proposition:

p ∨ q ≡ p or q

Let r be some new proposition such that r = p ∧ q. Since r is also a proposition, it will represent
a result of either true or false. For example, if r = p ∧ q and s = p ∨ q, then we can define t by
combining r and s as follows:

t = r ∧ s
= (p ∧ q) ∧ (p ∨ q)

3

Computer Science and Engineering University of Arkansas – Fort Smith

Conditional
Let p and q be propositions. A conditional proposition is defined as

p⇒ q

Converse
If p⇒ q is a conditional proposition, the converse of the proposition is defined as:

q ⇒ p

Contrapositive
If p ⇒ q is a conditional proposition, the contrapositive (or transposition) of the proposition is
defined as:

¬q ⇒ ¬p

Biconditional
Let p and q be propositions. A biconditional proposition is defined as

p⇐⇒ q

It can also be read as p if and only if q, sometimes denoted as p iff q.

Quantifiers
Let S be some set. Let P (x) be some propositional function regarding variable x, where some
statement is made about x that is either true or false. Consider the following statement for P (x):

P (x) : x is greater than 3

The set S is the domain of discourse which specifies the allowable values of x in P (x). For our
example, we will let S = {1, 2, 3, 4, 5}. For each value in S, the statement P (x) will return either
true or false. For example, consider the following outcomes:

P (1) = false P (2) = false P (3) = false P (4) = true P (5) = true

Universal Quantifier
A universally quantified statement is a statement where every element in the set share some common
characteristic. Let P be some propositional function with a domain of discourse S. The following
statement is a universally quantified:

for every x, P (x) ≡ ∀xP (x)

4

Computer Science and Engineering University of Arkansas – Fort Smith

The symbol ∀ represent the universal quantifier. For our example, we will let our domain of discourse
A be the set A = {1, 2, 3, 4, 5}. We will use the proposition function P (x) that returns true or false
for the statement x is greater than 3. Since a statement is either true or false, consider the following
quantified statement and determine its outcome:

∀x ∈ A, P (x)

This statement should return false since there exists some x in A where x ≤ 3. Another way to
consider the statement ∀x ∈ A, P (x) is to consider the following as a larger statement involving
conjunction: ∧

x∈A
P (x) = P (1) ∧ P (2) ∧ P (3) ∧ P (4) ∧ P (5)

Existential Quantifier
An existentially quantified statement is a statement where there exists at least one element in the
set where some property holds. Let P be some propositional function with a domain of discourse
S. The following statement is a existentially quantified:

there exists x, P (x) ≡ ∃xP (x)

The symbol ∃ represent the universal quantifier. For our example, we will let our domain of discourse
B be the set B = {1, 2, 3, 4, 5}. We will use the proposition function P (x) that returns true or false
for the statement x is greater than 3. Since a statement is either true or false, consider the following
quantified statement and determine its outcome:

∃x ∈ A, P (x)

This statement should return true since there exists at least one x in B where x ≤ 3. Another way
to consider the statement ∃x ∈ B, P (x) is to consider the following as a larger statement involving
disjunction: ∨

x∈A
P (x) = P (1) ∨ P (2) ∨ P (3) ∨ P (4) ∨ P (5)

Propositional Logic
Propositions p and q are logically equivalent when the both p and q are either both true or both
false.

Logical Equivalence
1. p⇒ q ≡ p ∧ ¬q

2. p⇔ q ≡ (p⇒ q) ∧ (q ⇒ p)

5

Computer Science and Engineering University of Arkansas – Fort Smith

De Morgan’s Laws for Logic
1. ¬(p ∨ q)⇐⇒ ¬p ∧ ¬q

2. ¬(p ∧ q)⇐⇒ ¬p ∨ ¬q

3. ¬(p⇒ q)⇐⇒ p ∧ ¬q

4. ¬(∀xP (x))⇐⇒ ∃x¬P (x)

5. ¬(∃xP (x))⇐⇒ ∀x¬P (x)

6

